127

Organomolybdän- und Organowolfram-Reagenzien, VI^[1]

Zur Kenntnis der carbonylmethylenierenden Molybdän-Aluminium- und Wolfram-Aluminium-µ-methylen-Komplexe

Thomas Kauffmann*, Manfred Enk, Petra Fiegenbaum, Ursula Hansmersmann, Wilfried Kaschube, Michael Papenberg, Euripides Toliopoulos und Siegfried Welke

Organisch-Chemisches Institut der Universität Münster, Correns-Straße 40, D-48149 Münster

Eingegangen am 28. Juni 1993

Key Words: Carbonyl olefination / Molbydenum aluminium complexes, organo / Tungsten aluminium complexes, organo / Tebbe reagent / Aluminium, molybdenum and tungsten complexes

Organomolybdenum and Organotungsten Reagents, VI^[1]. – On the Carbonyl-Methylenating Molybdenum-Aluminium and Tungsten-Aluminium μ -Methylene Complexes

MoCl₅, MoOCl₃(THF)₂, MoO₂Cl₂, (MeO)₂MoCl₃, (MeO)₄MoCl, WOCl₃(THF)₂, and WOCl₄ form carbonyl-methylenating complexes and 1-2 equiv. of CH₄ by reacting with 2 equiv. of Me₃Al. These thermolabile complexes are prepared in solution and differ in their properties (e.g. ability to transfer mostly more than 1 CH₂ unit per Mo or W atom in carbonyl-olefinating processes; high sensitivity to water, no hydroxy ketone affinity) from the carbonyl-olefinating 1,3-dimetallacyclobutanes (M = Mo, W) and are believed to be mono- and bicyclic analogs (e.g. hypothic structures 3, 6-8) of the Tebbe reagent (1), containing $Mo - \mu CH_2 - Al$ or $W - \mu CH_2 - Al$ groups, respectively. Analogous complexes seem to be produced by treating $MoOCl_3(THF)_2$ with $2 Me_2Zn$ or $(MeO)_2MoCl_3$ and (Me-OMOCI with 2 MeMgBr in each case. Unlike the dimeric and, due to a Mo-Mo bond, diamagnetic Mo^V derivatives (Me-O)₂MoCl₃ and (MeO)₄MoCl (according to ¹H-NMR structure 9 or 10 and 11 or 12, respectively) the complexes obtained by the reactions $(MeO)_2MoCl_3 + 2 Me_3Al$ and $(MeO)_4MoCl +$ 2 Me₃Al are paramagnetic, indicating the expected absence

Von unserer Arbeitsgruppe wurden thermolabile Carbonylolefinierungs-Reagenzien beschrieben, die bei Einwirkung von 2 Äquivalenten *Methyllithium* (McLi) oder Trimethylsilylmethylmagnesiumchlorid auf Mo^v-, Mo^{v1}-, W^voder W^{v1}-Chloride entstehen, gegen Wasser in der Regel überraschend resistent sind und mit hoher Wahrscheinlichkeit eine 1,3-Dimolybda- oder 1,3-Diwolframacyclobutan-Struktur besitzen^[2-5]. Ein zweiter Typ thermolabiler carbonylolefinierender Mo- und W-Komplexe wurden erhalten, als man Methyllithium durch *Trimethylaluminium* ersetzte^[5.6]. Wir berichten hier zusammenfassend über Komplexe dieses zweiten Typs, deren erster Vertreter von Fiegenbaum^[7a] beschrieben wurde.

A) Reagenzbildung

Daten der Reaktionen von Mo-Chloriden sowie $WOCl_3(THF)_2$ mit Me₃Al, die zu Lösungen carbonylolefinierender Komplexe führten^[7-9], sind in Tab. 1 zusammen-

of a Mo-Mo bond. The ¹H-NMR spectrum of the reaction mixture obtained by treating the Mo^{VI} derivative MoO₂Cl₂ with 2 Me₃Al in THF shows various signals for μ -CH₂ groups, whereas signals of $t-CH_2$ ligands are missing (t = terminal). In analogy to 1 the carbonyl-olefinating activity of the Mo-Al and W-Al reagents is activated by the addition of 2 equiv. of HMPA. Treatment of PhCOCH₂NEt₂ (19) with $MoO_2Cl_2 +$ $2 Me_3Al$ leads to carbonyl olefination with formation of 20 and also to α -methylation with formation of PhCOCH(Me)- NEt_2 (21), pointing to the intermediate formation of a t-CH₂ – Mo ligand. $\{MoO_2Cl_2 + 2 Me_3Al + 2 HMPA\}$ has found to be the best reagent for the carbonyl olefination of aldehydes, whereas $\{WOCl_3(THF)_2 + 2 Me_3Al + 2 HMPA\}$ was optimal for ketones. In 1:1 reactions both reagents normally give better yields than the Tebbe reagent. By applying $\{WOCl_3(THF)_2 + 2 Me_3Al\}$ and $\{MoO_2Cl_2 + 2 Me_3Al\}$ on ketones 16-18 an interesting neighbour group effect of electron donor atoms in the δ position to the keto group was observed.

gestellt. Daneben gibt die Tabelle auch über einige zum Vergleich durchgeführte Umsetzungen mit Me2Zn, MeMgBr und MeLi Auskunft. Wie bei Bildung der oben erwähnten 1,3-Dimetallacyclobutan-Reagenzien^[2-4] entsteht auch bei</sup> der Einwirkung von Me₃Al mit Mo-Chloriden oder WOCl(THF)₂ Methan neben kleinen Mengen Ethan und Ethen. Während aber bei Bildung der 1,3-Dimetallacyclobutane maximal 1 Moläquivalent Methan pro Mo- oder W-Chlorid freigesetzt wird, waren es bei den Reaktionen mit Me₃Al 1.5 – 2.0 Moläquivalente [Ausnahme: (MeO)₄MoCl]. Diese Beobachtungen finden in Abschnitt B) eine Erklärung. Versuche zur Isolierung von Komplexen, die bei Umsetzungen von Tab. 1 in Lösung entstehen, führten wegen Thermolabilität oder Bildung von Substanzgemischen nicht zu Reinsubstanzen, sondern lediglich zu einem amorphen Feststoff mit stark reduzierter carbonylolefinierender Aktivität^[6,7c] (siehe Abschnitt B).

WOCl₄, das mit 2 Me₃Al einen carbonylolefinierenden Komplex liefert (siehe Tab. 5), reagierte mit 2 Et_3Al zu einer

Chem. Ber. 1994, 127, 127-135 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009-2940/94/0101-0127 \$ 10.00+.25/0

Chlorid	Methylie- rungs- reagenz	gebildete Moläquiv. Gas	Gaszusammensetzung (%)	gebildete Moläquiv. CH₄	Lit.
MoOCl ₃ ^[a]	Me ₃ Al	2.0	98 CH ₄ , 2 C ₂ H ₄	2.0	[7c]
WOCl ₃ ^[b,c]	Me ₃ Al	2.0	97 CH ₄ , 2 C ₂ H ₆ , 1 C ₂ H ₄	1.9	[8b]
MoO ₂ Cl ₂ ^[a]	Me ₃ Al	1.9	98 CH ₄ , 1 C ₂ H ₆ , 1 C ₂ H ₄	1.9	[7c]
WOCl ₃ ^[c]	Me ₃ Al	1.9	99 CH ₄ , 1 C ₂ H ₄	1.9	[8a,9]
(MeO) ₂ MoCl ₃ ^[a]	Me ₃ Al	1.6	99 CH ₄ , 1 C ₂ H ₄	1.6	[8d]
MoCl	Me ₃ Al	1.6	94 CH ₄ , 2 C ₂ H ₆ , 4 C ₂ H ₄	1.5	[7c]
MoOCl ₃ ^[a]	Me ₂ Zn	1.3	n. b.	n. b.	[7c]
(MeO) ₄ MoCl ^[a]	Me ₃ Al	1.1	99 CH ₄ , 1 C ₂ H ₄	1.1	[8d]
(MeO),MoCl ₂ ^[a]	MeMgBr	1.1	94 CH ₄ , 6 C ₂ H ₆	1.0	[8d]
(MeO) ₄ MoCl ^[a]	MeMgBr	0.9	96 CH ₄ , 3 C ₂ H ₆ , 1 C ₂ H ₄	0.9	[8d]

Tab. 1. Methan-Bildung bei der Umsetzung von Mo-Chloriden mit 2 Moläquiv. Me₃Al, Me₂Zn oder MeMgBr nach 2. im Experimentellen Teil. MoOCl₃ und WOCl₃ wurden als Bistetrahydrofuran-Addukte eingesetzt. n. b. = nicht bestimmt

^[a] Reaktionstemp. -70 bis 20 °C. - ^[b] Umsetzung in diesem Fall mit 4 Äquiv. Me₃Al. - ^[c] Reaktionstemp. -70 bis ca. 40 °C.

Spezies, die Acetophenon nicht carbonylolefinierte, sondern durch McMurry-Reaktion in 42proz. Ausbeute in 1,2-Dimethyl-1,2-diphenylethen überführte^[8c]. Da ein McMurry-Reagenz durch Reduktion von WCl₆ mit *n*-Butyllithium entsteht^[10], wird WOCl₄ sehr wahrscheinlich von Et₃Al reduziert.

B) Zur Struktur der mittels Me₃Al erhaltenen Reagenzien und der Vorstufen (MeO)₂MoCl₃ und (MeO)₄MoCl

Die Informationen über die Methan-Entwicklung bei der Reagenzbildung (Tab. 1) und die Methylenübertragungsraten bei der Carbonylolefinierung (Abschnitt C) sowie die hohe Empfindlichkeit der mit Me₃Al hergestellten Reagenzien gegen Wasser und Alkohol, durch die sie sich ebenso wie durch die fehlende "Hydroxyketon-Affinität"^[4,5] deutlich von den carbonylolefinierenden 1,3-Dimetallacyclobutanen unterscheiden, führten zur Hypothese^[5,6], daß analog zur Bildung des Ti-Al-Reagenzes 1 von Tebbe^[11] und eines strukturähnlichen Zr-Al-Reagenzes^[12] cyclische Verbindungen entstehen, die µ-CH₂-Gruppen in den Teilstrukturen Mo-CH₂-Al oder W-CH₂-Al enthalten und deren C-Al-Bindung die hohe Empfindlichkeit gegen Hydroxylgruppen erklärt. Die hohe Empfindlichkeit gegen Wasser und Alkohol könnte allerdings auch auf die noch vorhandenen Al-Me-Gruppen zurückgehen. Für die Bildung von µ-CH₂-Gruppen vermuten wir den am Beispiel von 3 formulierten Weg (bei 2 und 3 könnte die Verbrückung des Mo- und Al-Atoms statt durch die MeO-Gruppe durch den Cl-Liganden des Al-Atoms erfolgen; vgl. 9-12), bei dem nur ein Cl-Ligand am Mo-Atom benötigt wird, während bei den Synthesen der carbonylolefinierenden 1,3-Dimetallacyclobutane^[2-5] zwei Cl-Liganden zur Bildung einer µ-CH₂-Gruppe erforderlich sind. Die Frage, ob bei der Methan-Bildung aus 2 die Methylgruppe vom Mo- oder Al-Atom stammt und ob die Methan-Bildung, wie in analogen Fällen formuliert, in einem Synchronprozeß^[2,5,13] oder in einem Stufenprozeß erfolgt, kann gegenwärtig nicht beantwortet werden. Da bei Anwendung von 2 Me₃Al auf (MeO)₄MoCl nur 1 Äquivalent Methan entsteht (Tab. 1), wird in diesem Fall nur eine µ-CH₂-Gruppe gebildet. Besitzt das Mo- oder W-Atom zwei oder mehr Cl-Liganden, kann bei der Umsetzung mit Me₃Al den Ergebnissen von Tab. 1 zufolge die Methan-Abspaltung unter Bildung eines Bicyclus mit 2 μ -CH₂-Gruppen doppelt erfolgen, was zu besonders wirksamen Carbonylolefinierungs-Reagenzien führt. In den Fällen, in denen nur ca. 1.5 Äquivalente Methan gebildet werden [MoCl₅, (MeO)₂Mo-Cl₃], stoppt die Reaktion anscheinend z. T. auf der Stufe des zu **5** analogen Monocyclus. Das intermediäre Auftreten einer Methyl-Mo-Spezies bei der in Schema 2 mechanistisch gedeuteten Umsetzung von MoO₂Cl₂ mit 2 Me₃Al ist ¹H-NMR-spektroskopisch nachgewiesen (siehe unten).

Schema 1. Tebbe-Reagenz (1) und postulierter Mechanismus für die Bildung des carbonylolefinierenden Reagenzes gemäß (MeO)₄MoCl + 1 Me₃Al

Zur Überprüfung der Strukturvorstellungen wurden die durch Umsetzung von je 2 Moläquivalenten Me₃Al mit den Mo^V-Chloriden (MeO)₂MoCl₃ und (MeO)₄MoCl sowie dem Mo^{VI}-Chlorid MoO₂Cl₂^[8c] erhaltenen Reagenzien ¹H-NMRspektroskopisch untersucht, wobei auch die noch nicht bekannte Struktur der beiden als Ausgangssubstanzen eingesetzten Mo^V-Chloride interessierte.

 $(MeO)_2MoCl_3$ und $(MeO)_4MoCl$ und daraus erhaltene carbonylolefinierende Komplexe^[8d]: Das nach Lit.^[14] dargestellte $(MeO)_2MoCl_3$ liegt in apolaren Solvenzien wie CHCl₃ oder Benzol dimer vor^[15]. Das von uns in CDCl₃

gemesscne ¹H-NMR-Spektrum zeigt sehr scharfe Signale, die auf Diamagnetismus der Meßprobe und somit auf eine durch Spinpaarung entstandene Mo-Mo-Bindung schließen lassen. Da die Methoxygruppen nur *ein* Singulett (δ = 5.60) verursachen, erfolgt die Dimerisierung außer über die Mo-Mo-Bindung über Cl-Brücken, wonach nur die Strukturen 9 und 10 in Frage kommen, zwischen denen nicht entschieden werden konnte. Das nach Lit.^[15] synthetisierte (MeO)₄MoCl ist in 0.01 м Benzollösung dimer^[15]. Dem von uns in CDCl₃ gemessenen ¹H-NMR-Spektrum zufolge ist auch diese Verbindung diamagnetisch und dürfte daher ebenfalls eine Mo-Mo-Bindung enthalten. Das Spektrum zeigt für die Methoxygruppe drei Singuletts bei $\delta = 5.14$ (A), 4.82 (B) und 3.69 (C) im Integrationsverhältnis 1:1:2, so daß bei Annahme einer dimeren Struktur die trans-Form 11 oder die cis-Form 12 vorliegt, zwischen denen vorerst nicht entschieden werden konnte.

Die bei $+10^{\circ}$ C in $[D_8]$ THF gemessenen Spektren der aus den Reaktionen $(MeO)_2MoCl_3 + 2 Me_3Al$ und $(Me-O)_4MoCl + 2 Me_3Al$ erhaltenen Komplexe zeigen eine große Signalbreite, die auf paramagnetisches Verhalten der Meßproben hinweist und eine Spektrenauswertung unmöglich machte. Demnach erfolgt bei Einwirkung von Me_3Al auf die Dimeren von $(MeO)_2MoCl_3$ und $(MeO)_4MoCl$ Sprengung der Mo-Mo-Bindung, was mit der vermuteten Bildung von 3 aus $(MeO)_4MoCl$ und einem zu 3 analogen monocyclischen oder zu 6 analogen bicyclischen Komplex aus $(MeO)_2MoCl_3$ übereinstimmt.

Aus MoO_2Cl_2 erhaltener carbonylolefinierender Komplex^[8c]: Einen tieferen Einblick in das Reaktionsgeschehen erlaubten die ¹H-NMR-Spektren (bei -70, -30, +10 und +25 °C), die nach Umsetzung des Mo^{VI}-Derivats MoO₂Cl₂ mit 2 Me₃Al und 2 [D₁₈]HMPT in CDCl₃ gemessen wurden. Bei -70 °C trat das Singulett von Methan bei $\delta = 0.21$ auf, das aber erst oberhalb 0 °C intensiv wurde; sowie ein Sin-

Chem. Ber. 1994, 127, 127-135

gulett bei $\delta = 0.81$. Letzteres wird den Methylgruppen der Dimethylverbindung 4 zugeordnet, da ein entsprechendes ¹H-NMR-Signal ($\delta = 0.81$) erschien, als MoO₂Cl₂ bei -70 °C in [D₈]THF mit 2 Äquivalenten MeLi versetzt wurde^[8e]. Gestützt wird diese Zuordnung auch dadurch, daß das Methylsignal von Me₂Mo(O₂)(bpy)₂ bei $\delta = 0.58$ liegt^[16]. Bei Temperaturerhöhung erscheinen im Resonanzbereich der Aluminiumalkyle eine Vielzahl neuer Signale, was eine Zuordnung hier unmöglich machte. Während sich bei 10°C erste CH₂-Signale zeigten, waren bei 25°C folgende CH₂-Signale deutlich erkennbar: Im Bereich $\delta = 5.7 - 5.0$ ("Hochfeldbereich") ein sehr intensives Singulett bei $\delta =$ 5.34 und ein Multiplett zwischen $\delta = 5.6$ und 5.4, im Bereich $\delta = 20.8 - 10.1$ ("Tieffeldbereich") vier Dubletts verschiedener Intensität. Nach 1stdg. Halten der Probe bei 25°C zeigte sich ein klares Bild, das sich nach einer weiteren Stunde relativ wenig verändert hatte: Im "Hochfeldbereich" der für verbrückende CH_2 -Liganden (μ -CH₂) charakteristisch ist^[17], erschien das $\delta = 5.34$ -Singulett mit nur wenig verringerter Intensität, verglichen mit dem ersten 25°C-Spektrum; statt des Multipletts waren vier Dubletts mit gegenüber dem Multiplett stark reduzierter Intensität erkennbar. Im "Tieffeldbereich" erschienen mit deutlich reduzierter Intensität wieder die vier Dubletts des ersten 25°C-Spektrums. Durch H,H-COSY-NMR wurde festgestellt^[8c], daß die Dubletts im "Hochfeldbereich" (alle ${}^{2}J = 13.3 \text{ Hz}$) nicht untereinander, sondern mit denen im "Tieffeldbereich" (alle $^{2}J = 13.3 \text{ Hz}$) koppeln (ermittelte Dublettpaare: $\delta = 10.70/$ 5.53; 10.59/5.47; 10.42/5.04; 10.15/5.44). Daher ist kaum zweifelhaft, daß nicht nur die Dubletts im "Hochfeldbe-

reich", sondern auch die im "Tieffeldbereich", die nach der chemischen Verschiebung auch von terminalen CH2-Liganden (t-CH₂) stammen könnten^[17], von µ-CH₂-Liganden stammen, deren beide H-Atome ungleiche Umgebung besitzen. Ihre Umgebung muß wegen der sehr verschiedenen chemischen Verschiebung sehr unterschiedlich sein. Wie bei den Reagenzien des 1,3-Dimolybdacyclobutan-Typs ${MoOCl_3(THF)_2 + 2 MeLi}$ und ${MoOCl_4 + 2 MeLi}$, wo Entsprechendes beobachtet wurde^[3], kann vermutet werden, daß jeweils eines der beiden CH2-Protonen durch eine H-Brücke mit einem Sauerstoffatom (Oxo- oder THF-Ligand) verknüpft ist, was zu einer Tieffeldverschiebung führen muß^[18]. Die beobachtete Kopplungskonstante 13.3 Hz liegt im Bereich geminaler Kopplungskonstanten von Vierringsystemen (10-14 Hz^[19]). 13-15 sind Teilstrukturen, die den Dublettsignalen entsprechen würden. ¹³C-, ²⁷Al- und ⁹⁵Mo-NMR-Untersuchungen am Reagenz $MoO_2Cl_2 + 2 Me_3Al$ + 2 HMPT} führten nicht zu auswertbaren Spektren^[8c].

Da im Reaktionsgemisch pro Al cin Äquivalent [D₁₈]HMPT vorhanden war - nur unter diesen Bedingungen wurden auswertbare Spektren erhalten - kann nicht ausgeschlossen werden, daß dieser mehrzähnige, günstige Komplexpartner für Al durch Komplexierung auf unübersichtliche Weisc die ¹H-NMR-Daten verfälscht. Um überhaupt eine Vorstellung zu geben, soll aber dennoch eine Deutung der ¹H-NMR-Spektren versucht werden. Aus der primär gebildeten Dimethylverbindung 4 entsteht durch doppelte a-H-Eliminierung ein bei 25 °C verhältnismäßig stabiler µ-CH2-Komplex, der das relativ breite Singulett bei $\delta = 5.34$ verursacht. Bei diesem Komplex könnte es sich um 6 handeln, wobei angenommen werden müßte, daß das Singulett ein nicht aufgelöstes Dublett darstellt oder daß infolge raschen Ligandenaustauschs am Al die CH2-Protonensignale zusammenfallen, denn bei tetraedrischer Koordination des Al sind die CH2-Protonen von 6 nicht äquivalent. Außerdem besteht die Möglichkeit, daß statt der bei 6 gezeichneten Verbrückung über die Oxoliganden des Mo die Al-Mo-Verbrükkung durch den Cl-Liganden der Al-Atome erfolgt. Die Al-Atome wären wohl auch in diesem Fall tetraedrisch koordiniert, da sich wahrscheinlich das im Reaktionsgemisch vorhandene [D₁₈]HMPT anlagern würde. Neben dem relativ stabilen Komplex bildet sich ein sehr labiler Komplex mit µ-CH₂-Ligand(en) (Zwischenprodukt 5?) oder t-CH₂-Ligand(en), der zu Oligomeren reagiert, die eventuell 2,4-Dimolybdaoxetan- (14) oder 1,3-Dimolybdacyclobutan-Teilstrukturen (15) enthalten. Mit solchen Teilstrukturen muß gerechnet werden, da eine t-CH2-Mo-Spezies - unmittelbar aus MoO₂Cl₂ oder analog Schema 4 aus einer µ-CH₂-Mo-Spezies entstanden - nach Schema 3 cyclisieren könnte. Da dies Oligomerisierung ermöglicht, sei die 30 min nach der Umsetzung von MoO2- Cl_2 mit 2 Me_3Al bei 0°C beobachtete Abscheidung eines gelben, amorphen, thermolabilen Feststoffs erwähnt, der überraschend wenig Al enthielt (Al: Mo = 2:5) und, in THF suspendiert, schwach carbonylolefinicrend wirkte¹⁶¹. Die Vorstellung der Oligomerisicrung paßt zur Beobachtung, daß einige in dieser Hinsicht untersuchte Reagenzien von Tab. 2-5 die angegebenen Produktaus-

Schema 3. 2 + 2-Cycloadditionen, die zu den Teilstrukturen 14 und 15 führen

beuten nur dann liefern, wenn die Carbonylverbindung bei der Reagenzbildung im Reaktionsgemisch vorliegt (siehe 4. im Experimentellen Teil) und somit das thermolabile Reagenz unmittelbar nach der Bildung abfangen kann.

C) Reaktivität gegen Aldehyde und Ketone

Aldehyde: Die aus MoCl₅ sowie Mo- und W-Oxochloriden durch Einwirkung von Me₃Al erhaltenen carbonylolefinierenden Komplexe sind im Vergleich zu den carbonylolefinierenden 1,3-Dimetallacyclobutanen^[2-5] wirkungsvollere Methylenüberträger. So wurden z. B. bei den in Tab. 2 angegebenen Umsetzungen 1.44-1.84 CH₂-Gruppen pro Mo-Atom auf überschüssigen Benzaldehyd übertragen, während carbonylolefinierende 1,3-Dimolybdacyclobutane in der Regel nur 0.5 und maximal 0.79^[7d] CH₂-Gruppen pro Mo-Atom übertragen. Dementsprechend konnten mit den Mo-Al-Reagenzien bei Umsetzungen im Reagenz/Aldehyd-Verhältnis 1:1 oder 2:1 zum Teil sehr gute Olefin-Ausbeuten erzielt werden (Tab. 3 im Experimentellen Teil). $\{MoO_2Cl_2 + 2 Me_3Al\}$ erwies sich als günstigstes Reagenz und wird somit von uns für die Methylenierung von Aldehyden als Reagenz der Wahl empfohlen. Es dürfte in der Regel dem Tebbe-Reagenz (1) überlegen sein, das bei vergleichenden Untersuchungen häufig enttäuschte^[8f] (vgl. z. B. die Versuche 17 und 18 von Tab. 3). Am schlechtesten schnitten die Methoxyreagenzien $\{(MeO)_2MoCl_3 + 2 Me_3 -$ Al} und $\{(MeO)_4MoCl + 1 \text{ oder } 2 Me_3Al\}$ ab. Wie die Versuche 4, 15 und 16 von Tab. 3 zeigen, entstanden auch bei den Umsetzungen von Mo^v-Chloriden mit Me₂Zn oder MeMgBr carbonylolefinierende Spezies, die vermutlich analoge Strukturen wie die aus Me₃Al erhaltenen besitzen. also Zn oder Mg als Ringglied enthalten. Da bei den Umsetzungen von (MeO)₄MoCl mit MeLi (Versuche 9 und 10 von Tab. 3) keine carbonylolefinierende Spezies entstand, scheint dagegen Li als Ringglied ungeeignet zu sein. Offenbar bildet sich auch kein Komplex des 1,3-Dimolybdacyclobutan-Typs, was nach den mitgeteilten mechanistischen Vorstellungen, nach denen zwei Cl-Liganden am Mo-Atom erforderlich sind, erwartet wurde. Orientierenden Untersuchungen zufolge wird das Mo-Atom von (MeO)₄MoCl durch 1 Äquivalent MeLi unter Bildung von Methan und Ethan reduziert^[8d].

Das für die Carbonylmethylenierungen von Ketonen (siehe unten) sehr günstige Reagenz $\{WOCl_3(THF)_2 +$

Tab. 2. CH₂-Übertragungsraten bei der Umsetzung von carbonylolefinierenden Mo-Al-Reagenzien mit 2 oder 4 Moläquivalenten Benzaldehyd (THF, -70 bis 20 °C). A = MoOCl₃(THF)₂ + 2 Me₃Al; B = MoO₂Cl₂ + 2 Me₃Al; C = MoCl₅ + 2 Me₃Al. n.b. = nicht bestimmt

Reagenz	Verhältnis Reagenz: PhCHO	Ausb. (%) an PhCH=CH ₂	übertra- gene CH ₂ - Gruppen	Rückge- winnung (%) PhCHO	Lit.
$A + 1 Ph_3P$	1:4	46	1.84	34	{7b]
A	1:4	40	1.60	54	[7b]
Α	1:2	76	1.52	3	[7b]
В	1:2	75	1.50	n.b.	[7c]
С	1:4	36	1.44	2	[7b]

2 Me₃Al} (mit oder ohne HMPT-Zusatz) erwies sich für entsprechende Reaktionen mit Aldehyden weniger geeignet als die aus MoO₂Cl₂ oder MoOCl₃(THF)₂ gebildeten Reagenzien von Tab. 3. Der Grund dürfte sein, daß das W-Reagenz erst beim Erhitzen unter Rückfluß voll wirksam wird, d.h, unter Bedingungen, bei denen vermehrt Konkurrenzreaktionen der Aldehyde sowie Sekundärreaktionen (darunter Olefinmetathese; vgl. z. B. Lit^[20]) der daraus gebildeten terminalen Olefine eintreten. In 1:1:1-Konkurrenzversuchen mit Aldehyd/Keton-Paaren carbonylolefinieren die mittels Me₃Al hergestellten Mo-Komplexe aldehydselektiv (Beispiele: Versuche 1-4 von Tab. 4 im Experimentellen Teil). Die hohe Aldehydselektivität der Reagenzien vom 1,3-Dimolybdacyclobutan-Typ^[2,4] wird dabei nicht erreicht. Wie die schlechte Materialbilanz bei den Versuchen 1-4 von Tab. 4 zeigt, laufen - besonders an den Aldehyden - außer der Carbonylolesinierung noch andere Reaktionen ab. Das zum Vergleich eingesetzte, unter den optimierten Bedingungen von Grubbs et al.^[21] angewandte Tebbe-Reagenz (1) war bei der Konkurrenzumsetzung mit je 0.5 Äquiv. Benzaldehyd und Acetophenon nur 1.7:1-aldehydselektiv (Produkte 69% Styrol, 2% 1-Phenylethanol, 40% α-Methylstyrol, 23% 2-Phenylethanol; Benzaldehyd und Acetophenon wurden zu 7 bzw. 22% zurückerhalten)^[8f].

Ketone: Wie bei den 1,3-Dimetallacyclobutan-Reagenzien mit M = Mo, $W^{[5]}$ sind auch bei den hier beschriebenen Reagenzien die W-Derivate für die Carbonylolefinierung von Ketonen günstiger als die Mo-Derivate (Tab. 4, 5 im Experimentellen Teil). Maßgeblich dürfte sein, daß bei den W-Derivaten wegen größerer Thermostabilität erhitzt werden kann. Im Gegensatz zu den Verhältnissen bei Aldehyden (Tab. 2) wird nur eine CH2-Gruppe pro W- oder Mo-Atom auf im Überschuß angebotene Ketogruppen übertragen (vgl. Anmerkungen ^[d] und ^[g] von Tab. 5). Da sich WOCl₃(THF)₂ gegenüber WOCl₄ als die etwas günstigere Reagenzvorstufe erwies und ein Zusatz von HMPT die Olefin-Ausbeute verbesserte (vgl. Versuche 1 und 2, 5 und 6, 11 und 12 von Tab. 5 sowie 5 und 6 von Tab. 4), ist für die Ketonmethylenierung das Reagenz { $WOCl_3(THF)_2 + 2 Me_3Al + 2 HMPT$ } das Empfehlenswerteste. Es dürfte den Reagenzien 1^[11] sowie ${WOCl_3(THF)_2 + 2 MeLi}^{[20]}$ und ${WOCl_4 + 2 MeLi}^{[20]}$ die zur Erlangung guter Ausbeuten im Überschuß eingesetzt werden müssen, in der Regel klar überlegen sein. Ein Amin-N-Atom in β - oder γ -Stellung zur Ketogruppe hemmt die Carbonylolefinierung mit { $WOCl_3 + 2 Me_3Al$ } drastisch (Versuche 7-9 von Tab. 5). Hierfür machen wir die Bildung stabiler Chelatkomplexe zwischen Aminoketon und Reagenz verantwortlich, denn bei den Versuchen 7 und 8 konnte die Keton-Rückgewinnung von 2 auf 79% erhöht werden, als bei der Aufarbeitung statt mit Hydrogencarbonatlösung mit einer wäßrigen Lösung des guten Komplexbildners KCN hydrolysiert wurde. Eine entsprechende desaktivierende Komplexierung wurde bei $\{MoO_2Cl_2 +$ 2 Me₃Al} nicht beobachtet (Schema 5 sowie Lit.^[8c]). Ein zur Ketogruppe δ -ständiges Elektronendonoratom wirkte sich bei der Umsetzung 10 von Tab. 5 nur wenig hemmend auf die Carbonylolefinierung aus, bei den Umsetzungen 17 und 18 von Tab. 5 (Vergleich mit Versuch 16) sowie den Kon-

Chem. Ber. 1994, 127, 127-135

kurrenzumsetzungen 7 und 8 von Tab. 4 aber deutlich fördernd. Der hier erkennbare reaktionsfördernde Nachbargruppeneffekt (mechanistische Deutung siehe unten) ist von besonderem Interesse. Während nämlich ein analoger Effekt von β - und γ -ständigen Donoratomen häufig beobachtet wurde und zu sehr regioselektiven Carbonylalkylierungen^[22] und -methylenierungen^[4] genutzt werden konnte ("Cheleselektivität"), haben δ -ständige Donoratome bisher keinen entsprechenden Effekt gezeigt. Hier liegt ein besonderes synthetisches Potential der Reagenzien {MOCl₃(THF)₂ + 2 Me₃Al} (M = W, Mo), sofern sich bei noch ausstehenden Untersuchungen die Erwartung bestätigt, daß sie sehr regioselektive Monomethylenierungen von Diketonen ermöglichen.

Zum Mechanismus der Carbonylolefinierung: Für die Carbonylolefinierungen mit den hier abgehandelten Reagenzien vermuten wir den in Schema 4 am Beispiel von 6 formulierten Mechanismus, der den Mechanismen entspricht, die für Carbonylolefinierungen mit 1^[23] und einem analogen Zr-Al-Reagenz^[12] angenommen werden. Weniger wahrscheinlich ist ein Cycloadditions-Cycloeliminierungs-Mechanismus, wie er bei den carbonvlolefinierenden 1.3-Dimetallacyclobutanen vermutet wird^[2,3,5]. Der Mechanismus von Schema 4 (via Carbenkomplex) wird durch den Befund nahegelegt, daß Basen (Ph₃P, HMPT^[24], Elektronendonatoratom in δ-Stellung zur Ketogruppe) die Reaktion fördern (vgl. Tab. 2, 4, 5). Ein weiteres gewichtiges Argument ist die unerwartete α -Methylierung^[8c] von **19** unter Bildung von **21** bei der Umsetzung mit { $MoO_2Cl_2 + 2 Me_3Al$ }, da diese Reaktion nur bei Entstehung eines t-CH2-Mo-Liganden verständlich ist, der entweder carbonylolefinieren oder nach Schema 5 durch Insertion + Reduktive Eliminierung α -methylieren kann. Bezeichnend ist, daß ein durch Carbonylolefinierung und a-Methylierung entstandenes Produkt von 19 nicht anfiel. Die Aktivierbarkeit der Mo-Al- und W-Al-Reagenzien durch Basen, die der Aktivierbarkeit von 1^[23] und des strukturverwandten Zr-Al-Reagenzes^[12] entspricht, stützt die Tebbe-Reagenz-ähnlichen Strukturvorschläge 3 und 6-8.

Schema 4. Vermuteter Mechanismus der Carbonylolefinierung mit Reagenz $\{MoO_2CI_2 + 2 Me_3AI\}$ ("6") (B = Base, z. B.

Bei Annahme des Mechanismus von Schema 4 kann der oben erwähnte reaktionsfördernde Nachbargruppeneffekt eines zur Ketogruppe δ -ständigen Donoratoms zwanglos damit erklärt werden, daß nach Fixierung des Donoratoms am Al – analog zur Fixierung von **19** in Schema 5 – die Methylenübertragung auf die Ketogruppe intramolekular und daher entropiebegünstigt erfolgen kann.

Abschließende Wertung des Anwendungspotentials: Der präparative Wert der hier beschriebenen Reagenzien ist recht beschränkt, da im Gegensatz zu den P- oder Si-enthaltenen Carbonylolefinierungs-Reagenzien nur CH₂-Gruppen übertragen werden, da anders als mit dem Tebbe- oder Grubbs-Reagenz Carbonsäureester und Lactone nicht methyleniert werden können und da im Vergleich zu den Reagenzien des 1,3-Dimolybdacyclobutan-Typs die Aldehydversus-Keton-Selektivität deutlich schlechter ist. Ihre Anwendung empfiehlt sich für die Carbonylmethylenierung von Aldehyden und Ketonen, sofern die gut eingeführten Carbonylmethylenierungs-Reagenzien unbefriedigende Ausbeuten liefern.

Wir danken der Deutschen Forschungsgemeinschaft, der Volkswagen-Stiftung und dem Fonds der Chemie für die Unterstützung dieser Arbeit.

Experimenteller Teil

Alle Umsetzungen mit metallorganischen Verbindungen wurden in getrockneten Solvenzien [THF vor Gebrauch von Kalium/Benzophenon destilliert; HMPT 1 d mit P₂O₅ unter Rückfluß erhitzt, abdestilliert und über Molekularsieb (4 Å) gelagert] unter Ar durchgeführt. Methyllithium: 1.6 \mbox{m} in Ether; Methylmagnesiumbromid: 3.0 \mbox{m} in Ether; Dimethylzink: Synthese nach Lit.^[25]; Me₃Al und Et₃Al wurden von der Fa. Schering, Bergkamen, zur Verfügung gestellt; deuterierte Verbindungen für die ¹H-NMR-Spektrometrie: CDCl₃, [D₈]THF, [D₁₈]HMPT: Deuterierungsgrad 99.8, 99.5 bzw. 99.2%. – Die Ausbeutebestimmungen erfolgten unter Verwendung authentischer Vergleichssubstanzen nach der Methode des internen Standards^[26] durch Kapillar-GC mit den Geräten Shimadzu GC-9A und Perkin-Elmer F22, wobei in der Regel die Säulen FS-SE 30, FS-SE 52 und FS-OV 225 sowie die internen Standards *n*-Dodecan und *n*-Decan verwendet wurden. Die genauen gaschromatographischen Meßbedingungen sind in den genannten Dissertationen und Diplomarbeiten angegeben. – ¹H-NMR: Bruker WM 300 (300 MHz). – IR: Gitterspektrophotometer 683⁺ der Fa. Perkin-Elmer.

1. In-Situ-Darstellung der Vorstufen der carbonylolefinierenden Komplexe. Allgemeine Vorschrift: 4.0 mmol des jeweiligen Mo-Chlorids (siehe Tab. 1–5), WOCl₃(THF)₂ oder WOCl₄, wurden in ca. 50 ml THF gelöst oder suspendiert. Nach Abkühlen auf ca. –70°C ließ man 8.0 mmol (0.78 ml) Me₃Al so langsam zutropfen, daß – 60°C nicht überschritten wurden. Es wurde 15 min gerührt, dann die Lösung oder Suspension für die Umsetzung nach 4. eingesetzt. Entsprechend wurde bei Umsetzungen verfahren, bei denen statt Me₃Al 8.0 mmol Me₂Zn oder MeMgBr als Methylierungsmittel verwendet wurde. Sofern bei den Versuchen von Tab. 4 und 5 ein HMPT-Zusatz angegeben ist, erfolgte die HMPT-Zugabe vor dem Versetzen von WOCl₃(THF)₂ oder MoO₂Cl₂ mit Me₃Al bei ca. –70°C.

2. Gasbestimmung bei der Reagenzbildung: Die quantitative Gasbestimmung bei der Umsetzung nach 1. mit anschließendem Erwärmen auf 20°C und in zwei Fällen (siehe Anmerkung^[e] von Tab. 1) auf ca. 40°C erfolgte wie für die Umsetzung MoCl₅ + 2 MeLi in Lit.^[2] beschrieben. Die qualitative Gasbestimmung durch GC an einer Porapak-Q-Säule erfolgte wie in Lit.^[3] Ergebnisse: Tab. 1.

3. ¹H-NMR-spektroskopische Untersuchungen (300 MHz) der Umsetzung $MoO_2Cl_2 + 2 Me_3Al + 2 [D_{18}]HMPT^{[8c]}$: 0.020 g (0.1 mmol) MoO₂Cl₂ und 0.036 g (0.2 mmol) Me₃Al wurden unter Ar in einem Schlenkrohr in 3.0 ml CDCl₃ bei 20°C gelöst. Zu der farblosen Lösung wurde bei -70 °C unter Rühren eine Lösung von 0.019 ml (0.2 mmol) Me₃Al in 0.5 ml CDCl₃ mit einer 1-ml-Einwegspritze durch ein Septum getropft. Nach 1stdg. Rühren bei -70°C wurde ca. 1 ml der braunen Reagenzlösung mit einem vorgekühlten, dickwandigen Teflon-Schlauch durch eine Glasfritte D 3 in ein NMR-Röhrchen gepreßt. Die dabei verwendete NMR-Abfüllapparatur^[2] war zuvor samt NMR-Röhrchen i. Vak. ausgeheizt, mit Ar belüftet und danach im Kühlbad bei -78°C gekühlt worden. Das NMR-Röhrchen wurde mit einer stark dehnbaren Gummifolie und einer darübergestülpten durchbohrten NMR-Verschlußkappe (= Überdruckventil) abgedichtet. Die Messungen erfolgten bei -70, -30, -10, 10 und $25 \,^{\circ}$ C. Durch Messungen ohne MoO₂Cl₂ wurde ermittelt, welche Signale von Mo-organischen Verbindungen verursacht werden. Klare Informationen lieferten die nachstehend angegebenen Spektren. Spektrum bei -70 °C: Es zeigt ein schwaches von Methan stammendes Singulett bei $\delta = 0.21$ und ein intensives Singulett bei $\delta = 0.81$, das aufgrund der chemischen Verschiebung (siehe Allgemeiner Teil) und des Verschwindens beim Erwärmen Mo-gebundenen Methylgruppen zugeordnet wird. Spektrum bei $-10^{\circ}C$: Die bei $-70^{\circ}C$ hergestellte Reaktionslösung wurde in ca. 20 min auf -10° C erwärmt. Das Methansignal bei $\delta = 0.21$ war jetzt intensiv und das Methylsignal bei $\delta = 0.81$ verschwunden. Spektrum bei 25°C: Die bei -70°C hergestellte Reaktionslösung wurde in ca. 30 min auf 25°C erwärmt, 1 h bei 25°C gehalten und dann gemessen. Dem Spektrum wurden folgende Informationen entnommen: ¹H-NMR (300 MHz, interner Standard CDCl₃): $\delta = 5.04$ (d, ²J = 13.3 Hz, 1H, CH₂), 5.34 (s, 2H, CH₂), 5.44 (d, ${}^{2}J = 13.3$ Hz, 1 H, CH₂), 5.47 (d, ${}^{2}J = 13.3$ Hz, 1 H, CH₂), 5.53 (d, ${}^{2}J = 13.3$ Hz, 1 H, CH₂), 10.15 (d, ${}^{2}J = 13.3$ Hz, 1 H, CH₂),

Tab. 3	. Olefinierung von	Aldehyden nach dem	Schema RCHO \rightarrow	$RCH = CH_2$.	Bei Mo-Reagenzien:	THF,	-70 bis 20°	C in ca.	18 h,
	-	wobei MoOCl	als MoOCl ₃ (THF) ₂	cingesetzt wu	rde. 2-Th $=$ 2-Thien	yl			

Nr.	Reagenz aus	RCHO	Molverh. Reagenz/ RCHO	Ausb. (%) $RCH = CH_2$	Rückge- winnung (%) RCHO	Lit.
1	$MoO_2Cl_2 + 2 Me_3Al$	PhCHO	1:1	98	0	[7c]
2	$MoO_2Cl_2 + 2 Me_3Al$	4-MeOC ₆ H₄CHO	1:1	98	0	[9]
3	$MoO_2Cl_2 + 2 Me_3Al$	n-C ₆ H ₁₃ CHO	1:1	67	6	[7c]
4	$MoOCl_3 + 2 Me_2Zn$	PhCHO	1:1	64	7	[7c]
5	$MoOCl_3 + 2 Me_3Al$	PhCHO	1:1	62	0	[7b]
6	$MoOCl_3 + 2 Me_3Al$	2-ThCHO	1:1	60	0	[76]
7	$MoCl_5 + 2 Me_3Al$	2-ThCHO	1:1	50	4	[7b]
8	$MoOCl_3 + 2 Me_3Al$	n-C ₆ H ₁₃ CHO	1:1	48	13	[7b]
9	$(MeO)_4MoCl + 1 MeLi$	PhCHO	1:1	0	79	[8d]
10	$(MeO)_4MoCl + 2 MeLi$	PhCHO	1:1	0 ^[a]	11	[8d]
11	$MoCl_5 + 2 Me_3Al$	PhCHO	2:1	65	0	[7a]
12	$(MeO)_2MoCl_3 + 2 Me_3Al$	4-MeOC ₆ H ₄ CHO	2:1	58	10	[8d]
13	$(MeO)_4MoCl + 2 Me_3Al$	PhCHO	2:1	49	6	[8d]
14	$(MeO)_4MoCl + 1 Me_3Al$	PhCHO	2:1	46	7	[9]
15	$(MeO)_4MoCl + 2 MeMgBr$	PhCHO	2:1	44	8	[8d]
16	$(MeO)_2MoCl_3 + 2 MeMgBr$	PhCHO	2:1	31	4	[8d]
17	Tebbe-Reagenz (1) ^[b]	PhCHO	1:1	50	5	[8f]
18	Tebbe-Reagenz (1) ^[c]	2-ThCHO	1:1	31	n. b.	[8f]

^[a] Zu 56% entstand 1-Phenylethanol; der Benzonitril-Test auf MeLi war positiv. -^[b] Reagenzbildung und Umsetzung unter den von Grubbs et al.^[23] angegebenen Bedingungen; zu 20% entstand 1-Phenylethanol. -^[c] Reagenzbildung und Umsetzung unter den von Tebbe et al.^[11] angegebenen Bedingungen; zu 48% entstand 1-Phenylethanol.

10.42 (d, ${}^{2}J = 13.3$ Hz, CH₂), 10.59 (d, ${}^{2}J = 13.3$ Hz, 1H, CH₂), 10.70 (d, ${}^{2}J = 13.3$ Hz, 1H, CH₂). Die Zuordnung der miteinander koppelnden Dubletts zu den im Allgemeinen Teil (Abschnitt B) angegebenen Dublettpaaren crfolgte durch H,H-COSY-NMR (300 MHz)^[8c].

4. Carbonylolefinierung mit Mo-Al- und W-Al-Reagenzien. Allgemeine Vorschrift: Zu den nach 1. hergestellten Reagenzvorstufen (Methyl-Mo- oder Methyl-W-Spezies) wurden bei -70 °C die in ca. 15 ml THF gelösten Aldehyde und Ketone von Tab. 2-5 in den dort angegebenen Molverhältnissen gegeben (Me₃Al reagiert bei Raumtemp. und darunter nicht mit Aldehyden und Ketonen). Bei den Versuchen von Tab. 2-5 wurde in der Regel in ca. 18 h auf 20°C crwärmt. In einzelnen Fällen (siehe Anmerkungen zu Tab. 4 und 5) wurde aufgrund von Versuchen zur Ausbeuteoptimierung auf 66°C erwärmt. Zur Aufarbeitung wurde in der Regel mit ges. wäßriger NaHCO3-Lösung versetzt, bis die CO2-Entwicklung beendet war. Anschließend wurde bis zur Trennung der Phasen Ether zugefügt. Die wäßrigen Phasen wurden mehrfach mit Ether extrahiert. Waren die organischen Phasen stark durch Metallsalzspuren verfärbt, wurden sie zur Reinigung über eine kurze Alox-Säule gegeben. Die vereinigten, mit Na2SO4 oder MgSO4 getrockneten organischen Phasen wurden nach Filtrieren i. Vak. auf 40 ml eingeengt. Die erhaltenen Produkte wurden durch GC mit authentischen Vergleichssubstanzen identifiziert, die alle literaturbekannt sind. Die Ausbeutebestimmung erfolgte ebenfalls durch GC. Ergebnisse: Tab. 2-5. – Bei Versuch 8 und 9 von Tab. 5 wurde bei der Aufarbeitung statt mit Hydrogencarbonatlösung mit einer ges. wäßrigen KCN-Lösung hydrolysiert, um stabile W-Komplexe der als Edukt eingesetzten Dialkylaminoketone zu zerstören.

5. Verwendete Mo- und W-Chloride: $MoCl_5$, MoO_2Cl_2 , WCl_6 und $WOCl_4$ waren käuflich. $MoOCl_3(THF)_2$ wurde nach Lit.^[27], $WOCl_3(THF)_2$ nach Lit.^[28] (als Umsetzungszeit erwiesen sich 24 h günstiger als 4 h) dargestellt. – Dimeres Dimethoxymolybdäntrichlorid^[8d]: (MeO)₂MoCl₃ wurde nach Lit.^[14] aus 5.00 g (18.0 mmol) MoCl₅ in 83proz. Ausb. (Lit.^[14] ohne Angabe) dargestellt. Die Ele-

mentaranalyse ergab die erwarteten Werte. In der Lit. nicht angegebene spektroskopische Daten: ¹H-NMR (300 MHz, CDCl₃): $\delta =$ 5.60 (s, 12H, CH₃). – *Dimeres Tetramethoxymolybdänchlorid*^{/8d/}: (MeO)₄MoCl wurde nach Lit.^[15] aus 8.25 g (30 mmol) in 43proz. Ausbeute (Lit.^[15] ohne Angabe) dargestellt. Die Elementaranalyse

Tab. 4. Konkurrenzumsetzungen in THF nach dem Schema $R^1R^2CO + R^3R^4CO \rightarrow R^1R^2C=CH_2 + R^3R^4C=CH_2$ mit einem Aldehyd/Ketonpaar (Vcrsuche 1-4) sowie mit Substratpaaren, bestehend aus einem funktionalisierten Keton und einem normalen Keton. A = (MeO)_2MoCl_3 + 2 Me_3Al; B = (MeO)_2MoCl_3 + 2 MeMgBr; C = (MeO)_4MoCl + 2 Me_3Al; D = (MeO)_4MoCl + 2 MeMgBr; E = MoO_2Cl_2 + 2 Me_3Al; F = WOCl_3(THF)_2 + 2 Me_3Al. Molverhältnis Mo- oder W-Reagenz/Substrat I/Substrat II = 1:1:1. In Klammern gesetzte Zahlen: Substratrückgewinnung in %

 70

Nr.	Rea- genz	Mol- äquiv. HMPT	₿ ¹ R²CO	R³R⁴CO	Ausb R^1R^2 - C=CH ₂	$R^{3}R^{4}-C=CH_{2}$	Lit.
1	A ^[a]	0	4-MeOC ₆ H₄CHO (0)	PhCOMe (73)	68	8	[8d]
2	B ^[a]	0	4-MeOC ₆ H₄CHO (38)	PhCOMe (85)	36	1	[8d]
3	$C^{[n]}$	0	4-MeOC ₆ H₄CHO (3)	PhCOMe (89)	53	3	[8d]
4	D ^[a]	0	4-MeOC ₆ H ₄ CHO (8)	PhCOMe (67)	44	2	[8d]
5	E ^[a]	0	PhCOCH(OMe)Ph (8)	PhCO(CH ₂) ₂ Me (76)	61	10	[8c]
6	Е ^(ь)	2	PhCOCH(OMe)Ph (3)	PhCOMe (59)	70	21	[8c]
7	F ^[b]	2	MeCO(CH ₂) ₃ NEt ₂ (16) (22)	PHCOMe (75)	73	26	[8b]
8	F ^{⊪]}	2	16 (35)	MeCO(CH ₂) ₃ Me (89)	48	7	[8b]

^[a] -70 bis 20 °C in 18 h. - ^[b] -70 bis 20 °C in 18 h, dann 3 h 66 °C.

Nr.	Rea- genz	Mol- äquiv. HMPT	Rea- genz/ Keton	R ¹ R ² CO	Ausb. (%) $R^1R^2C=CH_2$	Rückge- winnung (%) R ¹ R ² CO	Lit.
1	A ^[a]	0	1:1	Acetophenon	58	19	[8b]
2	A ^[a]	2	1:1	Acetophenon	87	2	[8b]
3	A ^[a]	2	3:1	Acetophenon	96	0	[8b]
4	A ^[a]	2	1:3	Acetophenon	32 ^[d]	56	[8b]
5	$A^{[a]}$	0	1:1	2-Hexanon	74	22	[86]
6	A ^[a]	2	1:1	2-Hexanon	84	1	[8b]
7	A [a]	0	1:1	PhCOCH ₂ NEt ₂ (19)	2	2	[86]
8	A ^[a]	2	1:1	PhCOCH ₂ NEt ₂ (19)	9	79 ^[e]	[8b]
9	A [a]	2	1:1	PhCO(CH ₂), NMe ₂	4	80 ^[e]	19]
10	A ^[a]	2	1:1	$MeCO[CH_2]_{1}NEt_2$ (16)	55	30	[8b]
11	A ^[a]	0	1:1	MeCOCCH ₂ ⁻ , COMe (17)	38 ^[f]	0	[8b]
12	A [a]	2	1:1	MeCOICH ₂] ₂ COMe (17)	81 ^[g]	0	[8b]
13	B ^[a]	2	1:1	Acetophenon	66	2	[9]
14	$C^{[b]}$	0	1:1	PhCO[CH ₂] ₂ Me	22	65	[8c]
15	C ^[c]	2	1:1	PhCO[CH ₂] ₂ Me	38	51	[8c]
16	$\mathbf{D}^{[a]}$	$\overline{0}$	1:1	2-Hexanon	8	65	[9]
17	$\mathbf{D}^{[a]}$	0	1:1	MeCO[CH ₂] ₂ CO ₂ Et (18)	ca. 50	34	[7b]
18	$\mathbf{D}^{[a]}$	0	1:1	MeCO[CH ₂] ₂ COMe (17)	65	n. b.	[7b]
19	E ^[a]	0	1:1	Acetophenon	11	63	[8d]
20	$\mathbf{F}^{[a]}$	0	1:1	Acetophenon	15	63	[8d]

Tab. 5. Olefinierung von *Ketonen* nach dem Schema R¹R²CO \rightarrow R¹R²C=CH₂ in THF. A = WOCl₃(THF)₂ + 2 Me₃Al; B = WOCl₄ + 2 Me₃Al; C = MoO₂Cl₂ + 2 Me₃Al; D = MoOCl₃(THF)₂ + 2 Me₃Al; E = (MeO)₂MoCl₃ + 2 Me₃Al; F = (MeO)₄MoCl + 2 Me₃Al; C = MeO₂Al; C = MeO

^[a] -70 bis 66°C in 3 h, dann 3 h 66°C. - ^[b] -70 bis 20°C in 18 h. - ^[c] -70 bis 20°C in 18 h, dann 3 h 66°C. - ^[d] Somit 0.96 CH₂ pro W-Atom übertragen. - [e] Mit KCN-Lösung aufgearbeitet (siehe Abschnitt 4.). - [f] 10% Mono- und 24% Diolefin, somit 0.58 CH₂ pro W-Atom übertragen (Monoolefin = 5-Methyl-5-hexen-2-on; Diolefin = 2,5-Dimethyl-1,5-hexadien). - [g] 56% Mono- und 25% Diolefin, somit 1.06 CH₂ pro W-Atom übertragen.

ergab die erwarteten Werte. In der Lit. nicht angegebene spektroskopische Daten: IR (Nujol/CsI): $\tilde{v} = 1100 - 1000$ cm⁻¹ [s (C-O)], 320 [m (Mo-Cl)]. - ¹H-NMR (300 MHz, CDCl₃): $\delta = 5.14$ (s. 6H, CH₃), 4.82 (s, 6H, CH₃), 3.69 (s, 12H, CH₃).

6. Darstellung nicht trivialer organischer Ausgangs- und Vergleichssubstanzen: Folgende Verbindungen wurden nach der angegebenen Literatur synthetisiert: 2-(Diethylamino)-1-phenylethanon (19)^[29]; 3-(Diethylamino)-2-phenyl-1-propen (20)^[30]; 2-(Diethylamino)-1-phenyl-1-propanon (21)^[3i]; 4-(Dimethylamino)-2-phenyl-1-buten^[32]; 5-(Diethylamino)-2-methyl-1-penten^[33]; 5-Methyl-5-hexen-2-on^[34]; 2,5-Dimethyl-1,5-hexadien^[35].

- ^[1] V. Mitteilung: T. Kauffmann, J. Jordan, K.-U. Voß, H.-W. Wilde, *Chem. Ber.* **1993**, *126*, 2083–2091. ^{12]} T. Kauffmann, P. Fiegenbaum, M. Papenberg, R. Wieschollek,
- J. Sander, Chem. Ber. 1992, 125, 143-148, und dort angegebene Literatur.
- ^[3] T. Kauffmann, P. Fiegenbaum, M. Papenberg, R. Wieschollek, D. Wingbermühle, Chem. Ber. 1993, 126, 79--87.
- ^[4] T. Kauffmann, J. Baunc, P. Fiegenbaum, U. Hansmersmann, C. Neiteler, M. Papenberg, R. Wieschollek, Chem. Ber. 1993, 126, 89 - 96
- ^{15]} T. Kauffmann in Advances in Metal Carbene Chemistry (Hrsg.: U. Schubert), Kluwer Academic Publishers, Dordrecht, 1989, S. 359 - 378
- ^[0] T. Kauffmann, M. Enk, W. Kaschube, E. Toliopoulos, D. Wingbcrmühle, Angew. Chem. 1986, 98, 928-929; Angew. Chem. Int. Ed. Engl. 1986, 25, 910.
- ^[7] Diplomarbeiten, Universität Münster: ^{17a]} P. Fiegenbaum, **1983**. ^{17b} W. Kaschube, **1984**. ^{17e]} M. Enk, **1986**. ^{17d]} S. Robbe, 1988.
- ¹⁸ Dissertationen, Universität Münster: ^[8a] S. Welke, 1988. –
 ^[8b] M. Toliopoulos, 1988. ^[8c] M. Enk, 1988. ^[8d] M. Papenberg, 1990. ^[8e] P. Fiegenbaum, 1987. ^[8f] U. Hansmersmann, 1987.
- ^[9] T. Kauffmann, B. Laarmann, D. Wingbermühle, unveröffentlichte Versuche, 1988.

- ^[10] K. B. Sharpless, M. A. Umbreit, M. T. Nieh, T. C. Flood, J. Am. Chem. Soc. 1972, 94, 6538–6540.
- [11] F. N. Tebbe, G. W. Parshall, G. S. Reddy, J. Am. Chem. Soc. 1978, 100, 3611-3613
- ^[12] F. W. Hartner Jr., J. Schwartz, S. M. Clift, J. Am. Chem. Soc. 1983, 105, 640-641.
- ^[13] M. B. Hursthouse, R. A. Jones, K. M. A. Malik, G. Wilkinson, J. Am. Chem. Soc. 1979, 101, 4128-4139.
- ^[14] D. C. Bradley, R. K. Multani, W. Wardlaw, J. Chem. Soc. 1958, 4647 - 4651
- ^[15] H. Funk, M. Hesselbarth, F. Schmeil, Z. Anorg. Allg. Chem. **1962**, *318*, 318-322.
- ^[16] G. N. Schrauzer, L. A. Hughes, N. Strampach, P. R. Robinson, E. O. Schlemper, Organometallics 1982, 1, 44-47.
- ^[17] W. A. Herrmann, Adv. Organomet. Chem. 1982, 20, 159-263.
- ^[18] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, 2. Aufl., Thieme, Stuttgart, **1979**, S. 150.
- ^[19] D. H. Williams, I. Fleming, Spektroskopische Methoden zur Strukturaufklärung, Thieme, Stuttgart, 1975, S. 118.
 ^[20] T. Kauffmann, R. Abeln, S. Welke, D. Wingbermühle, Angew.
- Chem. 1986, 98, 927-928; Angew. Chem. Int. Ed. Engl. 1986, 25, 909.
- ^[21] K. C. Ott, E. J. M. deBoer, R. H. Grubbs, Organometallics 1984, 3, 223 - 230.
- ^[22] T. Kauffmann, D. Stach, Angew. Chem. 1991, 103, 1683-1684; Angew. Chem. Int. Ed. Engl. 1991, 30, 1684–1685.
- ^[23] K. A. Brown-Wensley, S. L. Buchwald, L. Cannizzo, L. Clawson, S. Ho, D. Meinhardt, J. R. Stille, D. Straus, R. H. Grubbs, *Pure* 4ppl. Chem. 1983, 55, 1733-1744.
- ^[24] HMPT gilt als ausgesprochen guter Ligand für Al: T. Mole, E. A. Jeffrey, Organoaluminium Compounds, 1. Aufl., Elsevier, New York, 1972, S. 110.
- ^[25] R. R. Schrock, P. R. Sharp, J. Am. Chem. Soc. 1978, 100, 2389 - 2399.
- ^[26] R. Kaiser, Chromatographie in der Gasphase, 4. Teil, Bd. 1, Hochschultaschenbücher, Bibliographisches Institut, Mannheim, 1965, S. 209.
- ^[27] C. A. McAuliffe, W. Werfali, W. E. Hill, D. M. A. Minahan, Inorg. Chim. Acta 1982, 60, 87-91.
- ^[28] W. Levason, C. A. McAuliffe, F. P. McCullough, *Inorg. Chem.* 1977, 16, 2911 2916.

Chem. Ber. 1994, 127, 127-135

- ^[29] D. R. V. Golding, W. H. McNeely, J. Am. Chem. Soc. 1946, 68,
- ¹³⁰ J. K. V. Golding, W. H. McNeely, J. Am. Chem. Soc. **1946**, 88, 1847–1848.
 ¹³⁰ I. M. Patanova, V. A. Belyaev, G. I. Karakuleva, U.S.S.R.-Pat. 393, 266, **1973**; Chem. Abstr. **1973**, 91, 136767 u.
 ¹³¹ J. F. Hyde, E. Browning, R. Adams, J. Am. Chem. Soc. **1928**, 50, 2290–2292.
- ^[32] G. F. Hennion, C. C. Price, V. C. Wolff Jr., J. Am. Chem. Soc. 1955, 77, 4633-4636.
 ^[33] M. S. Kharasch, C. F. Fuchs, J. Org. Chem. 1944, 9, 359-372.
 ^[34] S. Nakai (Sumitomo Chemical Co., Ltd), Japan Kokai 7725, 709; Chem. Abstr. 1977, 87, 52781 w.
 ^[35] I. G. M. Campbell, S. H. Harper, J. Chem. Soc. 1945, 283-286.
- [202/93]